Identificación de dianas moleculares del cáncer de mama que interactúan con moléculas presentes en los frutos de Antidesma bunius: análisis basado en farmacología de red in silico
PDF

Palabras clave

antidesma bunius
cáncer de mama
farmacología de la red
objetivo de la acción
acoplamiento molecular antidesma bunius
breast cancer
network pharmacology
target of action
molecular docking

Cómo citar

MA, F., Gutierrez-Pajares, J. L., HUANG, D., XU, Y., WU, B., & SONG, S. (2021). Identificación de dianas moleculares del cáncer de mama que interactúan con moléculas presentes en los frutos de Antidesma bunius: análisis basado en farmacología de red in silico. TAYACAJA, 4(2), 47–58. https://doi.org/10.46908/tayacaja.v4i2.171

Resumen

El fruto de Antidesma bunius tiene propiedades medicinales y comestibles. En estudios anteriores, el extracto de fruta de A. bunius mostró actividad antiproliferativa en las células de cáncer de mama, pero sus componentes funcionales y mecanismo antitumoral aún no están claros. En esta investigación se analizaron los principales componentes activos de los frutos de A. bunius (detectados por UHPLC-MS / MS) y las dianas correspondientes mediante el método de farmacología en red, y se verificaron sus interacciones mediante acoplamiento molecular para explorar los posibles mecanismos supresores de tumores. Se seleccionaron un total de 24 componentes químicos activos del extracto de frutas de A. bunius, y 44 genes diana se cruzaron con el cáncer de mama, entre ellos, AKT1, ESR1, EGFR, EP300, ERBB2 y AR fueron los principales objetivos principales. de los genes diana involucraban principalmente procesos de metabolismo de lípidos celulares, respuesta a hormonas, desarrollo de tubos y centros de análisis de la vía KEGG en las vías del cáncer presentes en el cáncer de mama, páncreas y pulmón de células no pequeñas.Los flavonoides en los frutos de A. bunius mostraron fuertes unión a los objetivos centrales mediante análisis de acoplamiento molecular. Estos resultados sugieren fuertemente que los flavonoides en la fruta de A. bunius pueden inhibir la proliferación del cáncer de mama a través de múltiples dianas, principalmente por las vías ERK y PI3K-AKT.

https://doi.org/10.46908/tayacaja.v4i2.171
PDF

Citas

Abula, G., Ding, W., Li, D., Yan, X., Pei, X., & Xu, H. (2019). Mechanism of Astragalus membranaceus Multi-component synergistic therapy for breast cancer based on network pharmacology. Chemical and Biological Engineering, 10, 35–40.

Butkhup, L., & Samappito, S. (2008). An analysis on flavonoids contents in Mao Luang fruits of fifteen cultivars (Antidesma bunius), grown in northeast Thailand. Pakistan Journal of Biological Sciences: PJBS, 11(7), 996–1002.

Cai, Y., Zeng, M., & Chen, Y.-Z. (2021). The pharmacological mechanism of Huashi Baidu Formula for the treatment of COVID-19 by combined network pharmacology and molecular docking. Annals of Palliative Medicine, 10(4), 3864–3895.

Cao, Q., Qin, L., Huang, F., Wang, X., Yang, L., Shi, H., Wu, H., Zhang, B., Chen, Z., & Wu, X. (2017). Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicology and Applied Pharmacology, 319, 80–90.

Dai, X. (2016). May Tea of Ming Dynasty in Jiaoyuan Village. Land Greening, 8, 43.

Hickey, T. E., Dwyer, A. R., & Tilley, W. D. (2021). Arming androgen receptors to oppose oncogenic estrogen receptor activity in breast cancer. British Journal of Cancer.

Islam, S., Ahammed, S., Sukorno, F. I., Koly, S. F., Biswas, M., & Hossain, S. (2018). A review on phytochemical and pharmacological potentials of Antidesma bunius. Journal of Analytical & Pharmaceutical Research, Volume 7(Issue 5), 602–604.

Jiang, M., Hu, Y., Lin, G., Chen, C., & Li, H. (2020). Network Pharmacology and Bioinformatics-based Study on Mechanism of Resveratrol Against Triple Negative Breast Cancer. Chinese Journal of Modern Applied Pharmacology, 37(20), 2459–2464.

Krongyut, O., & Sutthanut, K. (2019). Phenolic Profile, Antioxidant Activity, and Anti-obesogenic Bioactivity of Mao Luang Fruits (Antidesma bunius L.). Molecules (Basel, Switzerland), 24(22), E4109.

Li, B., & Hoffmann, P. (2008). ANTIDESMA Burman ex Linnaeus, Sp. Pl. 2: 1027. 1753. Flora of China, 11, 209–215.

Li, H., Zhao, B., Liu, Y., Deng, W., & Zhang, Y. (2020). Angiogenesis in residual cancer and roles of HIF-1α, VEGF, and MMP-9 in the development of residual cancer after radiofrequency ablation and surgical resection in rabbits with liver cancer. Folia Morphologica, 79(1), 71–78.

Li, J. (1995). Composition preparation and clinical verification of Burn past. Guangxi Traditional Chinese Medicine, 6, 35.

Ma, F., Huang, D., Song, S., Wu, B., Guo, G., Wang, D., & Tan, L. (2020). Inhibitory Activity of Extracts of Antidesma montanum on the Proliferation of Breast Cancer Cells MDA-MB-231. Chinese journal of tropical crops, 41(8), 1693–1699.

Ma, F., Masood, T., Huang, D., Wu, B., Ge, Y., Chen, D., Gutierrez-Pajares, J. L., Nasiruddin, & Song, S. (2021). Inhibitory Activity of Fruits Extracts of Antidesma bunius on the Proliferation and Migration of MDA-MB-231 Breast Cancer Cells. Journal of Food and Nutrition Research, 9(2), 61–67.

Micor, J. R., Deocaris, C. C., & Mojica, E.-R. E. (2005). Biological Activity of Bignay [Antidesma bunius (L.) Spreng] Crude Extract in Artemia salina. Journal of Medical Sciences, 5(3), 195–198.

Park, J.-Y., Kang, S.-E., Ahn, K. S., Um, J.-Y., Yang, W. M., Yun, M., & Lee, S.-G. (2020). Inhibition of the PI3K-AKT-mTOR pathway suppresses the adipocyte-mediated proliferation and migration of breast cancer cells. Journal of Cancer, 11(9), 2552–2559.

Pei, J.-S., Liu, C.-C., Hsu, Y.-N., Lin, L.-L., Wang, S.-C., Chung, J.-G., Bau, D.-T., & Lin, S.-S. (2012). Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo (Athens, Greece), 26(6), 963–970.

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., & Yang, L. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6, 13.

Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211.

Shanghai Science and Technology Press. (1999). May Tea【Chinese Medicinal Materials Collection】Chinese Medicine Collection.

Wei, Gao. (2015). Study on the chemical constituents of Dendrobium gratiosissmum and Antidesma bunius [硕士, Anhui University of Traditional Chinese Medicine].

Zhaohui, A. (2011). Preliminary study on chemical components of Antidesma montanum. China Medical Herald, 8(13), 37–38.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2021 Funing MA, Jorge Luis Gutierrez-Pajares, Dongmei HUANG, Yi XU, Bin WU, Shun SONG

Descargas

Los datos de descargas todavía no están disponibles.