Biodegradation of refrigerant oil (biphenyl and biphenyl ether) in a soil of the oxisol order in Lagunillas Municipality of Zulia state, Venezuela
PDF (Español (España))

Keywords

degradation
biphenyl
biphenyl ether
oxisol
waste
bioremediation degradación
bifenilo
éter bifenilo
oxisol
desecho
biorremediación

How to Cite

Chirinos, I., & Pérez Almeida, I. B. (2020). Biodegradation of refrigerant oil (biphenyl and biphenyl ether) in a soil of the oxisol order in Lagunillas Municipality of Zulia state, Venezuela. Tayacaja, 4(2), 71–82. https://doi.org/10.46908/tayacaja.v4i2.174

Abstract

In order to evaluate and determine the average time necessary to achieve the total degradation of refrigerant oils, an experiment was carried out under greenhouse conditions using as substrate a soil of the oxisol order, with pH = 4.24 (extremely acidic), with high concentration exchangeable aluminum (Al + 3) = 1.44 cmol * Kg-1 of soil, and sandy loam texture (Fa), in addition to organic fertilizer in doses of 20,000 kg * ha-1. Considering the acidity condition of the soil, agricultural lime (CaCO3) was used in doses of 2,144 kg of carbonate per hectare. The experiment was designed in factorial 4 x 3, with 4 treatments and 3 repetitions. The treatments were evaluated in flowerpots or containers where approximately 0.06 m3 of the mixture was placed (soil + waste + amendments), the waste or oil was added in doses, equivalent to 10 L * m-2. The monitoring was carried out at 15, 30 and 45 days of incubation. The results obtained for the total degradation time of biphenyl (BF) was 51 days. In the case of biphenyl ether (BFE) the average time of 116 days. In addition to the time necessary for degradation, the population of bacteria of the genus Pseudomonas, contribution of organic carbon and variation of soil pH were evaluated. Based on the results of this study, field tests may be recommended following the conditions of treatments T1 to T3.

https://doi.org/10.46908/tayacaja.v4i2.174
PDF (Español (España))

References

Abramowicz, D.A. (1990). Aerobic and anaerobic biodegradation of PCBs: A review, Critical Review Biotechnology, 10(3), 241-251.

Acharya, P. & Hay, G.H. (2000). Thermal desorption-the technology of choice for most soil remediation in 2000 and beyond, Proceedings of the International Conference on Incineration and Thermal Treatment Technologies, Portland, OR, United States, May 8-12, 2000, 588-595.

Aguilera, S.M. (2000). Importancia de la protección de la materia orgánica en suelos. Simposio Proyecto Ley Protección de Suelo. Boletín N° 14. Valdivia, Chile, p. 77-85.

Arbeli, Z.(2009). Biodegradación de Compuestos Orgánicos Persistentes (cop): i. el caso de los Bifenilos Policlorados (PCB). Acta Biológica Colombiana,14(1),57-88.

Atlas, R. M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews. 45,(1),180-209.

Atlas, R. M. &Bartha, R. (2002). Ecología microbiana y microbiología ambiental. Ed. Addison Wesley. Madrid. 561 p.

Bracho, M., Díaz, L.&Soto, L.M. (2004). Degradación de hidrocarburos aromáticos por bacterias aisladas de suelos contaminados con petróleo en el estado Zulia, Venezuela. Boletín del Centro de Investigaciones Biológicas 38 (3): 15-22.

Chirinos, I., Larreal, M. & Díaz, J. (2010). Biorremediación de lodos petroquímicos mediante el uso de la biota microbiana autóctona en un oxisol del Municipio Lagunillas del estado Zulia, Venezuela. Revista Científica UDO Agrícola. 10 (1),133-140.

Garzón, J. M., Rodríguez-Miranda, J.P. & Hernández-Gómez, C. (2017). Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Universidad y Salud.

Harkness, M.R., McDermott, J.B., Abramowicz, D.A., Salvo, J.J, Flanagan, W.P., Stephens, M.L. et al.(1993). In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259, 503-507.DOI: 10.1126/science.8424172

Hutzinger, O., S. Safe, y V.Zitko. (1974). The chemistry of PCBs, CRC Press Inc., USA.

Im, S.H., Kannan, K.,Giesy, J.P., Matsuda, M & Wakimoto, T. (2002), Concentrations and Profiles of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Soils from Korea, Environmental Science and Technology, 36(17), 3700-3705.Doi: 10.1021/es020531i

INECC. Instituto Nacional de Tecnología y Cambio Climático. Secretaría de Medio Ambiente y Recursos Naturales. Ciudad de México. Factores que inciden en la eficiencia de una tecnología de remediación. 2007.

Kaštánek, F., Kuncová, G., Demnerová, K., Pazlarová., Burkhard, J & Maléterová, Y.(1995). Laboratory and pilot-scale sorption and biodegradation of polychlorinated biphenyls from ground water, International Biodeterioration and Biodegradation.

Kim, K.S., Hirai, Y., Kato, M., Urano, K & Masunaga, S.(2004b). Detailed PCB congener patterns in incinerator flue gas and commercial PCB formulations (Kanechlor), Chemosphere, 55(4), 539-553.doi: 10.1016/j.chemosphere.2003.11.056

Martínez H, E., Fuentes E, J.P. & Acevedo H, E. (2008). Carbono orgánico y propiedades del suelo. Revista de la ciencia del suelo y nutrición vegetal, 8 (1),68-96.

Medina, J., García, F. & Paricaguán. B. (2014). Biodegradación de petróleo por microorganismos autóctonos en suelos contaminados provenientes de la bahía de Amuay del Estado Falcón. Revista Ingeniería UC, 21 (1),62-69.

Niño Camacho, L.& Torres Sáenz, R. (2010). Implementación de diferentes técnicas analíticas para la determinación de biomasa bacteriana de cepas Pseudomonas putida biodegradadoras de fenol. Revista ION, 23 (1), 41-46.

Norris, G., Z. Al-Dhahair, Y J.& Birnstingl, G.A. (1998). A case study of the remediation of soil contaminated with polychlorinated biphenyls (PCBs) using low temperature thermal desorption, Contaminated Soil ‘98, Proceedings of the International FZK/TNO Conference on Contaminated Soil, 6th, Edinburgh, May 17-21, 2, 1079-1081.

Pucci, G., Acuña, A & Pucci. O. (2015).Biodegradación de hidrocarburos en fondos de tanques de la industria petrolera. Revista Peruana de Biología,22(1),97-101.

Risoul, V., Renauld, V.,Trouve, G & Gilot, P.T.(2002). A laboratory pilot study of thermal decontamination of soils polluted by PCBs. Waste Management, 22(1),61-72.

Rocha Gutiérrez, B. A., Peralta Pérez, M.R. &. Zavala Díaz de la Serna, F.J. (2015). Revisión global de los contaminantes emergentes PBDE y el caso particular de México. Revista Internacional de Contaminación Ambiental, 31 (3),311-320.

Ruiz-Aguilar, G.M.L. (2005). Biodegradación de Bifenilos Policlorados (BPCs) por microorganismos.Acta Universitaria, 15(2),19-28. doi:10.15174/au.2005.208

Siqueira, J. 1988. Biotecnología do Solo. Editorial Ceres. Brasil. 231 p.

Wong, M., Gibbs, P., Nortcliff, S, Swift, R (2000). Measurement of the acid neutralizing capacity of agroforestry tree prunings added to tropical soils. The Journal of Agricultural Science, 134(3), 269-276. doi:10.1017/S0021859699007388,

Zharikov, G. A., Varenik, V.I.,Borovick, R.V.,Dyadischev, N.R.,Kapranov, V.V., Kiselyova, N.I. et al. (2002). Ecologically safe technology for bioremediation of soils polluted by toxic chemical substances, NATO Science Series, 1: Disarmament Technologies, 37, 101-186.doi: 10.1007/978-94-010-0508-1_17

Zorrilla Velazco, M., Velazco Pedroso, P., Villanueva Ramos, G. & Vanlangehove, H. (2011). Validación parcial de un método analítico para la determinación de bifenilos policlorados (PCBs) en aceites de transformadores usando la cromatografía gaseosa y Aroclor 1254.Afinidad, 68(555).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Iván Chirinos, Iris Betzaida Pérez Almeida

Downloads

Download data is not yet available.