Molecular markers as support to plant breeding
PDF (Español (España))

Keywords

selección asistida por marcadores
marcadores genéticos
mapas genéticos
PCR
variabilidad marker-assisted selection
genetic markers
genetic maps
PCR
variability

How to Cite

Pérez Almeida, I. B., & Angulo Gratero, L. R. (2020). Molecular markers as support to plant breeding. Tayacaja, 4(2), 83–89. https://doi.org/10.46908/tayacaja.v4i2.175

Abstract

Molecular markers are DNA sequences that can be used to detect genetic variations associated with economically important traits in agriculture, so that they can be used by plant breeders as selection tools, increasing the efficiency of the traditional process, since the genotype of morphologically similar individuals excluding the influence of the environment. Molecular markers have been identified as a useful tool in the selection of superior genotypes; they have been used extensively in gene mapping, both for qualitative and quantitative traits and are also useful, to identify economically important traits in the breeding population and their subsequent manipulation in a short time. Plant breeding through marker assisted selection (MAS) has enormous potential to improve the efficiency of conventional methods. Agricultural biotechnology allows establishing an approximation between the phenotype and the genotype of individuals, allowing the study of the existing variability in genetic materials and sustained progress in the genetic improvement of plants. The advantages of the different available forms of molecular markers and their applications are explored.

https://doi.org/10.46908/tayacaja.v4i2.175
PDF (Español (España))

References

Ahmad, R; Anjum, M; Naz, S; Mukhtar, R. 2021. Applications of molecular markers in fruit crops for breeding programs: a review. Phyton, 90 (1): 17-34.

Anderson, JA; Gipmans, M; Hurst, S; Layton, R; Nehra, N; Pickett, J: Shah, DM; Souza, TL; Tripathi, L. 2016. Emerging agricultural biotechnologies for sustainable agriculture and food security. Journal of agricultural and food chemistry, 64(2) 383–393.

Acquaah, G. 2012. Principles of Plant Genetics and Breeding. 2nd edi. John Wiley & Sons, Ltd.

Ashokkumar, K; Govindaraj, M; Karthikeyan, A; Shobhana, VG; Warkentin, TD. 2020. Genomics-integrated breeding for carotenoids and folates in staple cereal grains to reduce malnutrition. Frontiers in genetics, 11, 414.

Barone, A; Fruciante, L. 2007. Molecular marker-assisted selection for resistance to pathogens in tomato. In: Guimaraes, E; Ruane, J; Scherf, B; Sonnino, A; Dargie, J (eds) Marker Assisted Selection: current status and future perspectives in crops, livestock, foresty and fish. FAO. Rome, Italy. pp 151-164.

Boettcher, PJ; Tixier-Boichard, M; Toro, MA; Simianer, H; Eding, H; Gandini, G; Joost, S; Garcia, D; Colli, L; Ajmone-Marsan, P. 2010. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Animal genetics, 41 Suppl 1, 64–77.

Borém, A; Diola, V; Fritsche-Neto, R. 2014. Plant Breeding and Biotechnological Advances. In: Biotechnology and Plant Breeding Applications and Approaches for Developing Improved Cultivars. Borém, A. and Fritsche-Neto, F. (eds). 1- 17. Academic Press: London.

Cobb, JN; Juma, RU; Biswas, PS; Arbelaez, JD; Rutkoski, J.; Atlin, G.; Hagen, T.; Quinn, M.; Ng, EHN. 2019. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132, 627–645.

Da Costa, AF; Teodoro, PE; Bhering, LL; Tardin, FD: Daher, RF; Campos, WF; Viana, AP; Pereira, MG. 2017. Molecular analysis of genetic diversity among vine accesossions using DNA markers. Genetic and Molecular Research 16 (2): gmr160295586.

De Vicente, M. C., Lopez, C., & Fulton, T. 2004. Genetic diversity analysis with molecular marker data: learning module. International Plant Genetic Resources Institute (IPGRI).

Diola, V; Borém, A; Arruda, N. 2014. Chapter 10: Tools for the Future Breeder. In: Borém, A., Diola, V. and Fritsche-Neto, R. Academic Press: London. 257 p.

Ferreira, ME; Grattapaglia, D. 1998. Introdução ao uso de marcadores moleculares em análise genética. 2 ed. Brasília: Embrapa-Cenargen. 220 p.

Foolad, MR. 2007. Genome mapping and molecular breeding of tomato. International journal of plant genomics, 2007, 64358.

Foolad, M; Sharma, A. 2005. Molecular markers as selection tools in tomato breeding. Acta Hort 695: 225-240. DOI: 10.17660/ActaHortic.2005.695.25

Garrido-Cardenas, JA.; Mesa-Valle, C. & Manzano-Agugliaro, F. 2018. Trends in plant research using molecular markers. Planta 247, 543–557.

Griffiths, AJ; Gelbart, WM; Miller, JH; Lewontin, RC. 2000. Genética Moderna. McGraw-Hill – Interamericana de España, S. A. U. Madrid, España. 676 p.

Hailu, G; Asfere, Y. 2020. The role of molecular markers in crop improvement and plant breeding programs: a review. Agricultural Journal 15 (6): 171-175. DOI: 10.36478/aj.2020.171.175

Ibitoye, DO; Akin-Idowu, PE. 2010. Marker-assisted-selection (MAS): A fast track to increase genetic gain in horticultural crop breeding. African Journal of Biotechnology 9 (52), 8889-8895.

Karlik, E. and H. Tombuloğlu. 2016. Molecular Markers and Their Applications. In: K.R. Hakeem et al. (eds.), Plant Omics: Trends and Applications, Springer International Publishing: Switzerland DOI 10.1007/978-3-319-31703-8_6

Kumawat, G; Kumawat, C; Chandra, K; Pandey, S; Chand, S; Mishra, U: Lenka, D; Sharma, R. 2020. Insights into Marker Assisted Selection and Its Applications in Plant Breeding.

Lateef, DD. 2015. DNA marker technologies in plants and applications for crop improvements. J Biosci Med 3:7–18.

Pérez Almeida, I. B. (2019). Aportes de la biotecnología al mejoramiento del arroz en Ecuador. REVISTA CIENTÍFICA ECOCIENCIA, 6(5), 1–22.

Rallo, P; Belaj, A; De La Rosa, R; Trujillo, I. 2002. Marcadores moleculares (en línea). Córdoba, España.

Ruane, J; Sonnino, A. 2011. Agricultural biotechnologies in developing countries and their possible contribution to food security. Journal of biotechnology, 156(4), 356–363.

Sharma, HC; Crouch, JH; Sharma, KK; Seetharama, N; Hash, CT. 2002. Applications of biotechnology for crop improvement: prospects and constraints. Plant Science 163, 381–395.

Snowdon, R.J., Wittkop, B., Chen, TW. et al. Rod J. Snowdon, Benjamin Wittkop, Tsu-Wei Chen & Andreas Stahl Crop adaptation to climate change as a consequence of long-term breeding. Theor Appl Genet 134, 1613–1623 (2021).

Tanksley, SD. 1983. Molecular Markers in Plant Breeding (Review). Plant Molecular Biology Reporter 1, 3-8.

UNFPA (Fondo de Población de las Naciones Unidas). 2021. Consultado 01/10/2021.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Iris Betzaida Pérez Almeida, Luis Rafael Angulo Gratero

Downloads

Download data is not yet available.