Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru
PDF (Español (España))

Keywords

Genotype environment interaction
Zea mays L.
adaptability
performance
productive potential Interacción genotipo ambiente
Zea mays L.
adaptabilidad
rendimiento
potencial productivo

How to Cite

García Mendoza, P. J., Medina Castro, D. E., Prieto Rosales, G. P., Manayay Sánchez, D., & Ortecho Llanos, R. (2021). Use of the AMMI model for the analysis of the genotype-environment interaction in varieties of starchy maize from Tayacaja, Peru. Tayacaja, 4(1), 09–24. https://doi.org/10.46908/tayacaja.v4i1.149

Abstract

The genotype by environment interaction (IGA) is the main limitation to select the best genotypes for different environments. The objective of this study was to use the additive main effects and multiplicative interaction (AMMI) model to evaluate the IGA of 25 varieties of starchy maize. The information was generated in four trials established in contrasting environments in the province of Tayacaja, Peru, in the 2019-2020 crop cycle. The 5x5 alpha lattice design was used, with three replications, where the experimental units consisted of two rows 4 m long, with spatial arrangements of 0.80 m between rows and 0.20 m between planting points. The IGA was measured through the grain yield, adjusted to 15% humidity. Once the importance of the IGA in the experiments was verified, the multivariate analysis was carried out, to obtain the singular values ​​of the AMMI terms that were significant for genotypes and environments. The IGA was highly significant and explained around 33% of the phenotypic variation in performance. The AMMI model explained around 92% of the variation due to the IGA, where the first two axes concentrated all this variation and allowed to identify varieties with specific adaptation and others with broad adaptation to the test environments. The results suggest that the AMMI model was appropriate to evaluate the IGA and to identify the best varieties for each test environment.

https://doi.org/10.46908/tayacaja.v4i1.149
PDF (Español (España))

References

Admassu, S., Nigussie, M. & Zelleke, H. (2008). Genotype-environment interaction and stability analysis for grain yield of maize (Zea mays L.). Ethiopia. Asian Journal of Plant Sciences, 7, 163–169.

Adnan, A. A., Diels, J., Jibrin, J. M., Kamara, A. Y., Shaibu, A. S., Craufurd, P. & Menkir, A. (2020). CERES-Maize model for simulating genotype-by-environment interaction of maize and its stability in the dry and wet savannas of Nigeria. Field Crops Research, 253.

Andrés-Meza, P., Sierra-Macías, M., MejíaContreras, J. A., Molina-Galán, J. D., Espinosa-Calderón, A., Gómez-Montiel, N. O., Valdivia-Bernal, R. (2014). Genotypeenvironment interaction in tropical maize varieties developed for the tropical region of Veracruz, Mexico. Interciencia, 39(3): 180-184.

Becker, H. C. (1981). Correlations among some statistical measures of phenotypic stability. Euphytica, 30:835-840.

Blum, A. (1988). Plant breeding for stress environments. Boca Raton, FL, USA: CRC Press.

Bowman, J. C. (1972). Genotype x environment interactions. Ann. Genet. Sel. Anim., 4(1), 117-123. doi: 10.1186 / 1297-9686-4-1-117

Chimonyo, V. G. P., Mutengwa, C. S. & Chiduza,C. (2014). Genotype × environment interactions and yield stability of stresstolerant open-pollinated maize varietiesi n the Eastern Cape province, South Africa. South African Journal of Plant and Soil, 31(2), 61-68.

Chura-Chuquija, J. & Huanuqueño-Coca, E. H. (2015). Comportamiento de ocho poblaciones de maíz amarillo (Zea mays L.) en cruzas con un probador. Anales Científicos, 76(1), 78-86.

Crossa, J. (1990). Statistical analysis of multi location trials. Academic Press, Advances in Agronomy, 44, 55-85.

Crossa, J., Cornelius, P. & Vargas, M. (2000). Modelos Estadísticos Multiplicativos para el Análisis de la lnteracción Genotipo x Ambiente. México D. F., México: CIMMYT Library.

Crossa, J., H. G. Gauch & Zobel, R. W. (1990). Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci., 30, 493-500.

Falcon, C. M., Kaeppler, S. M., Spalding, E. P., Miller, N. D., Haase, N., AlKhalifah, N. & Leon, N.d. (2020). Relative utility of agronomic, phenological, and morphological traits for assessing genotype-by-environment interaction in maize inbreds. Crop Science, 60(1), 62–81.

Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal components analysis. Biometrika, 58, 453–467.

García, P. J., Cabrera, S., Pérez, A., Silva, R., Álvarez, R., Marín, C., Monasterio, P. P. & Santella, M. (2009). Estabilidad del rendimiento y potencial agronómico de cultivares de maíz de endospermo normal y QPM en zonas agroecológicas de Venezuela. Agronomía Trop, 59(4), 433-443.

García, P. J., Pérez, A. A., Silva, R. J., Álvarez, R. M., Pedro, M. P. & Taramona, L. A. (2020). Evaluación del potencial agronómico dehíbridos de maíz amarillo basado en el análisis GGE biplot y el modelo AMMI. Bioagro, 32(2), 95-106.

Gauch, H. G. & Zobel, R. W. (1988). Predictive and postdictive success of statistical análisis of yield trials. Theoretical and Applied Genetics, 76, 1–10.

Gauch, H. G. & Zobel., R. W. (1996). AMMI análisis of yield trials. In M. S. Kang & H. G. Gauch (Eds.), Genotype-by-Environment interaction (pp. 85-122). Boca Ratón. USA CRC Press.

Khamphasan, P., Lomthaisong, K., Harakotr, B., Ketthaisong, D., Scott, M. P., Lertrat, K. & Suriharn, B. (2018). Genotypic Variation in Anthocyanins, Phenolic Compounds, and Antioxidant Activity in Cob and Husk of Purple Field Corn. Agronomy, 8(11), 271.

Li, P., Fan, Y., Yin, S., Wang, Y., Wang, H., Xu, Y. & Xu, C. (2020). Multi-environment QTL mapping of crown root traits in a maize RIL population. The Crop Journal, 8 645 – 654.

López-Morales, F., Chura-Chuquija, J. & GarcíaPando, G. (2019). Interacción genotipo por ambiente del rendimiento de maíz amarillo en híbridos trilineales, Perú. Revista Mexicana de Ciencias Agrícolas, 10(4), 859 – 872.

Mudada, N., Chitamba, J., Macheke, T. O. & Manjeru , P. (2017). Genotype × Environmental Interaction on Seed Cotton Yield and Yield Components. Open Access Library Journal, 4(e3192), 1-22.

Ngaboyisonga, C., Nyombayire, A., Gafishi, M. K., Nizeyimana, F., Uwera, A., Ndayishimiye, T., Karemera, F., Mutanyagwa, P., Gumisiriza, G. & Gahakwa. (2016). Adaptability and genotype by environment interaction of maize commercial hybrid varieties from East African seed companies in Rwandan environments. Global Journal of Agricultural Research, 4(2), 32–40.

Paz, N. E., Martínez-Sánchez, J., Flores, R. A., Iñiguez, P. C., Ramírez-Córdova, A. L. & Aparicio, Y. V. (2018). Rendimiento y Estabilidad de Híbridos Experimentales de Maíz Cultivados en el Centro de Chiapas, México. Revista Mexicana de Agroecosistemas, 5(2), 88 – 97.

Rusinamhodzi, L., Makumbi, D., Njeru, J. M. & Kanampiu, F. (2020). Performance of elite maize genotypes under selected sustainable intensification options in Kenya. Field Crops Research, 249 (2020) 107738.

San Vicente, F. S., Marín, C. & Díaz, D. (2005). Estabilidad del rendimiento y potencial agronómico de híbridos de maíz de alta calidad de proteína (QPM) en Venezuela. Agronomía Trop., 55(3), 397-410.

Setimela, P., Gasura, E., Thierfelder, C., ZamanAllah, M., Cairns, J. E. & Boddupalli, P. M. (2018). When the going gets tough: Performance of stress tolerant maize during the 2015/16 (El Niño) and 2016/17 (La Niña) season in southern Africa. Agriculture, Ecosystems and Environment, 268, 79–89.

Seyoum, S., Rachaputi, R., Fekybelu, S., Chauhan, Y. & Prasanna, B. (2019). Exploiting genotype x environment x management interactions to enhance maize productivity in Ethiopia. European Journal of Agronomy, 103, 165–174.

Souza, A., Miranda, G., Gonzaga, M. & Souza, L. (2009). Predicting the genetic gain in the Brazilian white maize landrace. Ciência Rural, 39, 19- 24.

Steel, R. & Torrie, J. (1988). Bioestadística: Principios y procedimientos (2da ed.). México: McGraw-Hill /Interamericana.

UNAT (Universidad Nacional Autónoma de Tayacaja “Daniel Hernández Morillo”). (2018). Selección de cultivares y conservación de la identidad genética de variedades de maíz (Zea mays L.) en la provincia de Tayacaja. Proyecto aprobado según Resolución de la Comisión Organizadora N°0126-2018-COUNAT (pp. 49). Perú.

Vargas, H. M. & Crossa., J. (2000). El análisis AMMI y la gráfica del biplot en 42. Retrieved from SAS. CIMMYT, INT. website: www.cimmyt. cgiar.org/biometrics Yan, W., Kang, M., Ma, B., Woods, S. & Cornelius, P. L. (2007). GGE Biplot vs. AMMI Analysis of Genotype-byEnvironment Data. Crop Sci., 47, 641–653.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Pedro José García Mendoza, Darío Emiliano Medina Castro, Gino Paul Prieto Rosales, Damián Manayay Sánchez, Ronald Ortecho Llanos

Downloads

Download data is not yet available.