Preliminary agronomic evaluation of rice (Oryza sativa L.) genotypes under saline soil conditions of Yaguachi, Ecuador
PDF
HTML

Keywords

Electrical conductivity
genotypes
salinity
soils
yield Conductividad eléctrica
genotipos
salinidad
suelos
rendimiento

How to Cite

Medina Litardo, R., Carrillo Zenteno, M., Acosta Velazco, L., Pérez- Almeida, I., Duran-Mera , C., & García Mendoza, P. J. (2023). Preliminary agronomic evaluation of rice (Oryza sativa L.) genotypes under saline soil conditions of Yaguachi, Ecuador. Tayacaja, 6(2), 09–17. https://doi.org/10.46908/tayacaja.v6i2.209

Abstract

Soil salinity is considered one of the main abiotic stresses that affect rice cultivation throughout the world. The main objective of this study was to carry out the preliminary agronomic evaluation of five commercial rice varieties (INIAP11, INIAP14, SFL-011, INIAP-FL-Arenillas and Fedearroz-60) under saline soil conditions in Yaguachi, Guayas, Ecuador.

A completely randomized block design was used to estimate the agronomic response of the materials by quantifying grain yield t.ha-1 (Yield), number of tillers.m-2 (TN), plant height at harvest (PH), number of panicles.m-2 (NPM), panicle length (PL), number of grains/panicle (NGP), number of filled grains/panicle (NFG), number of vain grains (NVG), weight of 1000 grain (P1000) and content of chlorophyll at 30 (C30D) and 60 (C60D) days.

The analysis of variance reflected a high phenotypic diversity among the varieties studied, showing adequate adaptation to the level of salinity contained in the soil used for the study. The INIAP-FL-Arenillas, INIAP14, INIAP11 and FEDEARROZ-60 varieties were the genotypes with the best responses under the study conditions, expressed in higher productivity levels.

The results also suggest the need to continue evaluating these varieties with and without saline stress conditions, to discriminate the effect of genotype by environment interaction and confirm the level of tolerance to saline stress present in these genotypes, optimizing the selection of the appropriate germplasm in breeding programs, aiming to obtaining genotypes tolerant to saline soils.

https://doi.org/10.46908/tayacaja.v6i2.209
PDF
HTML

References

Arshad, M; Saqib, M; Akhtar, J; Asghar, M. 2012. Effect of calcium on the salt tolerance of different wheat (Triticum aestivum L.) genotypes. Pak. J. Agri. Sci, 49 (4): 497-504.

Ashraf, M; Harris, P. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166(1): 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024.

Castillejo-Morales, A; Jarma-Orozco, A; Pompelli, MF. 2021. Physiological and morphological features denote that salt stress in Stevia rebaudiana is based on nonstomatic instead of stomatic limitation. Revista Colombiana de Ciencias Hortícolas, 15(3): e12928. https://doi.org/10.17584/rcch.2021v15i3.12928

Cobos, F; Gómez, L; Reyes, W; Hasang, E; Ruilova, M; Duran, P. 2021. Effects of salinity levels in Oryza sativa in different phenological stages under greenhouse conditions. Revista de la facultad de Agronomía de la Universidad de Zulia, 39(1): e223905. Disponible en: https://produccioncientificaluz.org/index.php/agronomia/article/view/37392.

Cristo, E; González, M; Pérez, N. 2012. Comportamiento de genotipos de arroz (Oryza sativa L.) promisorios para suelo salino. Cultivos Tropicales, 33(3): 42-46.

Dobermann, A.; Fairhust, T. 2012. Rice: Nutrient disorders & nutrient management. IPNI. 155-156 pp.

FAO and ITPS (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils). 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Rome, Italy.

Hallauer, A.; Carena, M.; Miranda, J. 2010. Quantitative genetics in maize breeding. 3rd. Ed., London, Springer. 663 p. https://doi.org/10.1007/978-1-4419-0766-0

Hussain, M; Ahmad, S; Hussain, S; Lal, R; Ul-Allah, S; Nawaz, A. 2018. Rice in Saline Soils: Physiology, Biochemistry, Genetics, and Management. Advances in agronomy, 148: 231-287. https://doi.org/10.1016/bs.agron.2017.11.002.

INEC (Instituto Nacional de Estadística y Censos), ESPAC (Encuesta de superficie y producción Agropecuaria Continua) 2021. 2022a. Aspectos metodológicos, resumen estadístico y resultados. Available in: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2021/Principales%20resultados-ESPAC_2021.pdf

INEC (Instituto Nacional de Estadística y Censos). 2022b. Encuesta de Superficie y Producción Agropecuaria Continua. Boletín Técnico. Disponible en: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2021/Bolet%C3%ADn%20t%C3%A9cnico.pdf

IRRI (International Rice Research Institute). 2002. Sistema de Evaluación Estándar para Arroz. Manila, Filipinas. http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf

Ivushkin, K.; Bartholomeus, H.; Bregt, AK.; Pulatov, A.; Kempen, B.; De Sousa, L. 2019. Global mapping of soil salinity change. Remote Sensing of Environment, 231, [111260]. https://doi.org/10.1016/j.rse.2019.111260

Khairi, M; Nozulaidi, M; Jahan, S. 2015. Effects of different water levels on physiology and yield of salinity rice variety. Australian Journal of Basic and Applied Sciences, 9(2): 339-345. Disponible en: https://www.researchgate.net/publication/277258267_Effects_of_different_Water_Levels_on_Physiology_and_Yield_of_Salinity_Rice_Variety

Khatun, S; Flowers, T. 1995. Effects of salinity on seed set in rice. Plant Cell Environ, 18: 61-67. https://doi.org/10.1111/j.1365-3040.1995.tb00544.x

Krishnamurthy, SL; Gautam, RK; Sharma, PC; Sharma, DK. 2016. Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crops Research, 190: 26-33. https://doi.org/10.1016/j.fcr.2016.02.018

Medina, RC; Sady, JG; Carrillo, MD; Pérez-Almeida, IB; Parismoreno, LL; Lombeida, ED. 2022. Effect of mineral and organic amendments on rice growth and yield in saline soils. Journal of the Saudi Society of Agricultural Sciences, 21(1), 29-37. https://doi.org/10.1016/j.jssas.2021.06.015

Pozo, W; Sanfeliu, T; Carrera, G. 2010. Variabilidad Espacial Temporal de la Salinidad del Suelo en los Humedales de Arroz en la Cuenca Baja del Guayas, Sudamérica. Revista Tecnológica- ESPOL, 23(1): 73-79.

Shaygan, M; Baumgartl, T. 2022. Reclamation of Salt-Affected Land: A Review. Soil Syst. 6, 61: 1 - 17. https://doi.org/10.3390/soilsystems6030061.

United States Salinity Laboratory Staff. 1954. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department of Agriculture: Washington, DC, USA. Disponible en: https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf.

Walpole, R.; Myers, R.; Myers, S.; Ye, K. 2012. Probabilidad y estadística para Ingeniería y Ciencias. Editorial Pearson.

Zeng, L; Shannon, MC. 2000. Effects of salinity on grain yield and yield components of rice at different seeding densities. Agronomy Journal, 92 (3): 418-423. https://doi.org/10.2134/agronj2000.923418x

Zeng, L; Shannon, M; Lesch, S. 2001. Timing of salinity stress affects rice growth and yield components. Agric. Water Manage, 48: 191-206. https://doi.org/10.1016/S0378-3774(00)00146-3

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Reina Medina Litardo, Manuel Carrillo Zenteno, Luís Acosta Velazco, Iris Pérez- Almeida, Christian Duran-Mera , Pedro José García Mendoza

Downloads

Download data is not yet available.