Design and construction of equipment for the elimination of saponin in Quinoa (Chenopodium quinoa Willd): Performance tests with Amarillo Marangani variety
PDF
HTML

Keywords

Saponina
desamargado
agua de bombeo
extracción Saponin
de-bittering
pumping water
extraction

How to Cite

Montañez Artica , W. M., Ramos Gómez , J. F., Sinche Charca , S. A., Hurtado-Soria, B. Z., Tamara Tamariz, S. J., & Villanueva López, E. (2024). Design and construction of equipment for the elimination of saponin in Quinoa (Chenopodium quinoa Willd): Performance tests with Amarillo Marangani variety. Tayacaja, 7(1), 31–39. https://doi.org/10.46908/tayacaja.v7i1.221

Abstract

Quinoa is a very important grain for human nutrition; In recent years, several research studies have addressed its nutritional use; However, one of its main weaknesses is its saponin content, which is an anti-nutrient and has a bitter taste. The debittering process involves the principle of recirculation of large quantities of water, with the purpose of reducing the consumption of this substance, it is important to develop methodologies and equipment that improve the efficiency of these traditional washing methods and reduce the work of operators and processors with the intention of making it less costly. The objective of the present research work was to design and build a quinoa de- saponifier , Amarillo Maranganí variety, to evaluate the effect of washing time (5, 10 and 15 min) and the flow of water recirculated by pumping (15, 30 and 45 L/min), on the elimination of saponin to acceptable commercial levels. The results indicated that the highest saponin extraction was achieved when using washing times of 5 min with water flow rates of 15 L/min, and 51.75 % of the initial saponin content was eliminated. In general, it is stated that increasing the flow rate of the washing water reduces the extraction efficiency, but performing a second washing significantly reduces the extraction, the equipment developed presents promising characteristics for application in the industry.

https://doi.org/10.46908/tayacaja.v7i1.221
PDF
HTML

References

Abalone, R., Cassinea, A., Gaston, A. & Lara, M. (2004). Some physical properties of amaranth seeds. Biosystems Engineering, 89, 1, 109-117. https://doi.org/10.1016/j.biosystemseng.2004.06.012.

Ayasan, T. (2020). Determination of Nutritional Value of Some Quinoa Varieties. Turk. J. Vet. Anim. Sci., 44, 950–954. https://doi.org/10.3906/vet-2003-53.

Arguello-Hernández, P., Samaniego, I.; Leguizamo, A., Bernalte-García, M.J., Ayuso-Yuste, M.C. (2024). Nutritional and Functional Properties of Quinoa (Chenopodium quinoa Willd.) Chimborazo Ecotype: Insights into Chemical Composition. Agriculture, 14, 396. https://doi.org/10.3390/agriculture14030396

Atarés, L. (2017). Determinación de la porosidad. Departamento de Tecnología de Alimentos. Universidad Politécnica de Valencia. España.

Bilalis, D. J., Roussis, I., Kakabouki, I., & Folina, A. (2019). Quinoa (Chenopodium quinoa Willd.) crop under Mediterranean conditions: A review. Ciencia e investigación agraria, 46(2), 51–68. https://doi.org/10.7764/rcia.v46i2.2151.

Budenaz, R. (2011). Diseño en ingeniería mecánica de Shigley. Editorial Mc Graw Hill, Novena Edición. México.

Borda, W., & Gamarra, W. (2003). Diseño y Construcción de un equipo mejorado para el desaponificado de quinua (Chenopodium quinoa Willd.). Investigaciones Agroindustriales (Chenopodium quinoa Willd.) y Cañihua (Chenopodium Pallidicaule Aellen) en Puno Perú. Perú.

Cerrón, F. (2014). Efectos de Tiempo y Temperatura en el Desamargado y Secado de Quinua (Chenopodium Quinoa Willd). Tesis de Pre Grado de la Facultad de Ingeniería en Industrias Alimentarias UNCP, Huancayo, Perú.

Cervilla, N., Mufart, J., Calandri, E., & Guzmán, C. (2012). Propiedades físicas de semillas y análisis proximal de harinas de chenopodium quinoa Willd cosechadas en distintos años y provenientes de la provincia de salta. II Jornada de Investigación en Ingeniería del NEA y Países Limítrofes. Universidad Tecnológica Nacional. Argentina.

Chen, X., Zhang, Y., Cao, B., Wei, X., Shen, Z., & Su, N. (2023). Assessment and comparison of nutritional qualities of thirty quinoa (Chenopodium quinoa Willd.) seed varieties, Food Chemistry: X, 19, 100808. https://doi.org/10.1016/j.fochx.2023.100808

Escribano, J., Cabanes, J., Jimenez-Atienzar, M., Ibanez-Tremolada, M., Rayda GomezPando, L., Garcia-Carmona, F., & Gandia-Herrero, F. (2017). Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chemistry, 234, 285–294. https://doi.org/10.1016/j.foodchem.2017.04.187.

Horwitz, W., & Latimer, G.W. (2005). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA.

IICA (2011). Manual de Producción de quinua de calidad en el Ecuador. GTZ, IICA, INIAP, ERPE. Quito.

ISO 14159:2002. International Standart. (2002). Safety of machinery hygiene requirements for the design of machinery. First Edition. Switzerland.

Ixtaina, V., Nolasco, S., & Toma, M. (2008). Physical properties of chia (Salvia hispánica L.) seeds. Industrial crops and products, 28, 286–293. https://doi.org/10.1016/j.indcrop.2008.03.009.

Koziol, M. J. (1991). Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). Journal of Food and Agriculture, 54, 211–219. https://doi.org/10.1002/jsfa.2740540206.

Koziol, M. J. (1993). Quinoa: A potential new oil crop. In ‘‘New crops’’ (J. Janick and J. E. Simon, Eds.), pp. 328–336. Wiley, New York.

Präger, A., Munz, S., Nkebiwe, P.M., Mast, B., & Graeff-Hönninger, S. (2018). Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy, 8, 197. https://doi.org/10.3390/agronomy8100197.

Pedrali, D., Giupponi, L., De la Peña-Armada, R., Villanueva-Suárez, M.J., & Mateos-Aparicio, I. (2023). The Quinoa Variety Influences the Nutritional and Antioxidant Profile Rather than the Geographic Factors. Food Chem., 402, 133531. https://doi.org/10.1016/j.foodchem.2022.133531.

Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J.A., & Viuda-Martos, M. (2018). Chemical, Fatty Acid, Polyphenolic Profile, Techno-Functional and Antioxidant Properties of Flours Obtained from Quinoa (Chenopodium quinoaWilld) Seeds. Ind. Crops Prod., 111, 38–46. https://doi.org/10.1016/j.indcrop.2017.10.006.

Ren, G., Teng, C., Fan, X., Guo, S., Zhao, G., Zhang, L., & Qin, P. (2023). Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 410, Article 135290. https://doi.org/10.1016/j.foodchem.2022.135290

Rodríguez Gómez, M.J., Prieto, J., Cruz Sobrado, V., & Calvo Magro, P. (2021). Nutritional Characterization of Six Quinoa (Chenopodium quinoaWilld) Varieties Cultivated in Southern Europe. J. Food Compos. Anal., 99, 103876. https://doi.org/10.1016/j.jfca.2021.103876.

Soto, J., Kuramotto, C., Seleme, J., Calderón, R., Castellares, C. (2010). Normas Andinas para quinua (Chenopodium quinoa Willd) y productos procesados (hojuelas y harina). Comité Técnico 3.12 Cereales Quinua IBNORCA-NOREXPORT. Bolivia.

Súarez-Estrella, D., Torri, L., Pagani, M. A., & Marti, A. (2018). Quinoa bitterness: Causes and solutions for improving product acceptability. Journal of the Science of Food and Agriculture, 98(11), 4033–4041. https://doi.org/10.1002/jsfa.8980.

Mache, J. (2015). Efecto de la velocidad de giro, nivel de abertura del escarificador, velocidad de agitación y tiempo de lavado en el contenido final de saponina y proteínas de la quinua (Chenopodium quinoa Willd). Tesis de Pre Grado de la Facultad de Ingeniería en Industrias Alimentarias UNCP, Huancayo, Perú.

Miranda, M., Vega-Gálvez, A., López, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scala, K. (2010). Impact of Air-Drying Temperature on Nutritional Properties, Total Phenolic Content and Antioxidant Capacity of Quinoa Seeds (Chenopodium quinoa Willd.). Ind. Crops Prod., 32, 258–263. https://doi.org/10.1016/j.indcrop.2010.04.019.

Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14(4), 577–605. https://doi.org/10.1007/s11101-015-9394-4.

Mott, R. (1996). Mecánica de fluidos aplicada. Ed. Prentice Hall Hispanoamericana S.A. México.

Mujica, A. & Ortiz, R. (2006). Informe Final del Proyecto Quinua. Cultivo Multipropósito Para los Países Andinos. Perú.

Norton, R. (2011). Diseño de maquinaria. Un enfoque integrado. Ed. Prentice Hall. México.

Vidueiros, S.M., Curti, R.N., Dyner, L.M., Binaghi, M.J., Peterson, G., Bertero, H.D., & Pallaro, A.N. (2015). Diversity and Interrelationships in Nutritional Traits in Cultivated Quinoa (Chenopodium quinoaWilld.) from Northwest Argentina. J. Cereal Sci., 62, 87–93. https://doi.org/10.1016/j.jcs.2015.01.001.

Vilche, C., Gely, M., & Santalla, E. (2003). Physical properties of quinoa seeds. Biosystems Engineering, 86, 1, 59–65. https://doi.org/10.1016/S1537-5110(03)00114-4.

Lan, Y., Wang, X., Wang, L., Zhang, W., Song, Y., Zhao, S., Yang, X., & Liu, X. (2024). Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chemistry, 445, 2024, 138693. https://doi.org/10.1016/j.foodchem.2024.138693.

Zehring, J., Reim, V., Schroter, ¨ D., Neugart, S., Schreiner, M., Rohn, S., & Maul, R. (2015). Identification of novel saponins in vegetable amaranth and characterization of their hemolytic activity. Food Research International, 78, 361–368. https://doi.org/10.1016/j.foodres.2015.09.010.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Wilson Manuel Montañez Artica , Juan Federico Ramos Gómez , Sonia Amandy Sinche Charca , Beetthssy Zzussy Hurtado-Soria, Stalein Jackson Tamara Tamariz, Eudes Villanueva López

Downloads

Download data is not yet available.