Abstract
This study, entitled "Phytostabilization capacity of nettle (Urtica dioica) and stinging nettle (Urens) in soils contaminated by phytosanitary products in CP. Pilcos, Colcabamba District", focuses on evaluating the ability of these two nettle species to reduce soil contamination caused by phytosanitary products, chemicals used in agriculture to control pests and diseases. The main objective of the project is to determine the phytostabilizing capacity of Urtica dioica and Vrens nettle against different toxic compounds, preventing their spread in the environment and reducing their negative impact on the local ecosystem and human health. To achieve this objective, an experimental study was planned with contaminated soils of CP.Pilcos, Colcabamba District, where an experimental comparison of both nettle species was made and their ability to absorb and retain contaminants was evaluated, as well as the effects on soil quality and local biodiversity. The results showed that both nettle species have potential for phytostabilization, although with different levels of effectiveness. Further studies are needed to determine the long-term effectiveness of both species, their impact on soil biodiversity and the optimization of conditions for their use in phytoremediation.
References
Agudelo, L., Macias, K., & Suárez, A. (2018). Fitorremediación: La alternativa para absorber metales pesados de los biosólidos.
Brady, N. C., & Weil, R. R. (2016). The Nature and Properties of Soils (15th ed.). Pearson.
Díaz, M. (2019). Capacidad de acumulación de la ortiga (Urtica Urens) para la fitorremediación de suelos contaminados con plomo en La Oroya, 78 Junín. [Universidad César Vallejo].
García, M., Hernández, M., & Silva, R. (2021). Preliminary assessment of Vrens nettle (Urtica Urens) for soil contamination remediation. Soil and Sediment Contamination: An International Journal, 30(5), 453-464.
Ghosh, M., & Singh, S. P. (2018). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1-18.
Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2023). Plant–bacteria partnerships for phytoremediation: A promising field for environmental cleanup. Environmental Science and Pollution Research, 20(7), 4287-4298.
Martínez, F., López, A., & Pérez, J. (2020). Urtica dioica as a potential candidate for phytoremediation: A review of its capabilities and applications. Journal of Environmental Management, 257, 109992.
Marcelo, G. (2018). Capacidad fitorremediadora de Urtica Urens L. en suelos con metales pesados del sector Campanario, Quiruvilca, Santiago De Chuco, La Libertad [Universidad César Vallejo].
Murtic, S., Svarc, T., & Škorić, D. (2019). Phytoremediation potential of wild nettle species for contaminated soils. Environmental Science and Pollution Research, 26(8), 8041-8054.
Núñez, R., Vong, Y., Ortega, R., & Olguín, E. (2024). Fitorremediación: Fundamentos y aplicaciones. 15.
Paz-González, A., Vieites-Blanco, C., & Taboada-Castro, M. M. (2017). Impact of pesticide use on soil salinity and electrical conductivity. Journal of Environmental Management.
Pimentel, D. (2019). Environmental and economic costs of the application of pesticides primarily in the United States. Environment, Development and Sustainability.
Pulford, I. D., & Watson, C. (2023). Phytoremediation of heavy metal-contaminated land by trees: A review. Environment International, 29(4), 529-540.
Segura-Muñoz, S. I., Trejo, J., & Cervantes, J. (2020). Influence of soil temperature on pesticide degradation: A review. Agricultural Sciences.
Yacolca, M. (2021). Capacidad fitorremediadora de la ortiga (Urtica Urens) en suelos contaminados con plomo por pasivo ambiental ubicado en la localidad de San Miguel-Cerro de Pasco [Universidad César Vallejo].

