Abstract
Organic agriculture is highly valued internationally as it results in significant economic gains for the value chains of various food products. Within the organic certification process, the identification of agrochemical residues in food is vital for screening production lots that come from organic and/or conventional crops. Currently, the analysis of agrochemical residues is performed with highly sophisticated techniques such as liquid chromatography (LC) and gas chromatography (GC) coupled to mass detectors (MS), these techniques are highly expensive and complex. The present review provides insights into how the combination of vibrational spectroscopy with appropriate chemometric techniques (multivariate statistics) can be used to develop methods for classification and quantification of agrochemical residues in various food matrices in a simple way, avoiding the use of toxic reagents, reducing operating costs and long analysis times in laboratories. The development of portable technology in vibrational spectroscopy would allow in-situ analysis in crop fields and agri-food industries.
References
Ali, S.M., Bonnier, F., Lambkin, H., Flynn, K., McDonagh, V., Healy, C., Lee, T.C., Lyng, F.M. y Byrne, H.J. (2013). A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections. Analytical Methods, 5(9), 2281-2291. https://doi.org/10.1039/C3AY40185E
Blanco, M. y Villarroya, I. (2002). NIR spectroscopy: a rapid-response analytical tool. Trends in Analytical Chemistry, 21, 240-250. https://doi.org/10.1016/S0165-9936(02)00404-1
David, F., Devos, C., Dumont, E., Yang, Z., Sandra, P. y Huertas-Pérez. J.F. (2017). Determination of pesticides in fatty matrices using gel permeation clean-up followed by GC-MS/MS and LC-MS/MS analysis: A comparison of low- and high-pressure gel permeation columns. Talanta, 165, 201-210. https://doi.org/10.1016/j.talanta.2016.12.032
Davydov, R.; Sokolov, M.; Hogland, W.; Glinushkin, A.; Markaryan, A. 2018. The pplication of pesticides and mineral fertilizers in agriculture. MATEC Web of Conferences, 245: 11003. https://doi.org/10.1051/MATECCONF/201824511003
European Commission [EC]. (2023, 12 de marzo). Agriculture and rural development. Organic production and products. https://agriculture.ec.europa.eu/farming/organic-farming/organic-production-and-products_en.
Fan, Y., Lai, K., Rasco, B. A., & Huang, Y. (2014). Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy. Food Control, 37, 153–157. https://doi.org/10.1016/j.foodcont.2013.09.014
González-Martín, M. I., Revilla, I., Vivar-Quintana, A. M. y Betances-Salcedo, E. V. (2017). Pesticide residues in propolis from Spain and Chile. An approach using near infrared spectroscopy. Talanta, 165, 533–539. https://doi.org/10.1016/j.talanta.2016.12.061
Rubio-Diaz, D.E. y Rodríguez-Saona, L.E. (2010). Application of Vibrational Spectroscopy for the Study of Heat-induced Changes in Food Components. Wiley, https://doi.org/10.1002/0470027320.s8942
Reichenbächer, M. y Popp, J., 2012. Vibrational spectroscopy. En: Reichenbächer, M. y Popp, J. (Eds.). Challenges in Molecular Structure Determination (pp. 63-143). Springer. https://doi.org/10.1007/978-3-642-24390-5_2
Rodríguez-Saona, L. E., Giusti, M. M., y Shotts, M. (2016). Advances in Infrared Spectroscopy for Food Authenticity Testing. En: Downey, G (Eds.). Advances in Food Authenticity Testing (pp. 71–116). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-100220-9.00004-7
Romia, M.B., y Bernàrdez, M.A. (2009). Multivariate Calibration for Quantitative Analysis. En: Sun Da-Wen (Eds). Infrared Spectroscopy for Food Quality Analysis and Control (pp. 51-82). Academic Press. https://doi.org/10.1016/B978-0-12-374136-3.X0001-6
Morgera, E., Caro, C.B. & Durán, G.M. (2012). Organic agriculture and the law. http://www.fao.org/docrep/016/i2718e/i2718e.pdf
Nazarloo, A.S., Sharabiani, V.R., Gilandeh, Y.A., Taghinezhad, E. y Szymanek, M. (2021). Evaluation of Different Models for Non-Destructive Detection of Tomato Pesticide Residues Based on Near-Infrared Spectroscopy. Sensors, 21, 3032. https://doi.org/10.3390/s21093032
Lu, Y., Li, X., Li, W., Shen, T., He, Z., Zhang, M., Sun, Y. y Liu, F. (2021). Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 257, 119759. https://doi.org/10.1016/j.saa.2021.119759
Lv, G., Du, C., Ma, F., Shen, Y., y Zhou, J. (2018). Rapid and Nondestructive Detection of Pesticide Residues by Depth-Profiling Fourier Transform Infrared Photoacoustic Spectroscopy. ACS Omega, 3(3), 3548–3553. https://doi.org/10.1021/acsomega.8b00339
Villanueva, E., Glorio-Paulet, P., Giusti, M.M., Sigurdson, G.T., Yao, S. y Rodríguez-Saona L.E. (2023). Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy. Talanta, 257, 124386. https://doi.org/10.1016/j.talanta.2023.124386
Wang, S.-Y., Shi, X.-C., Zhu, G.-Y., Zhang, Y.-J., Jin, D.-Y., Zhou, Y.-D., Lui, F-Q. y Laborda, P. (2021). Application of surface-enhanced Raman spectroscopy using silver and gold nanoparticles for the detection of pesticides in fruit and fruit juice. Trends in Food Science & Technology, 116, 583–602. https://doi.org/10.1016/j.tifs.2021.08.006
Yang, T., Zhou, R., Jiang, D., Fu, H., Su, R., Liu, Y., y Su, H. (2016). Rapid Detection of Pesticide Residues in Chinese Herbal Medicines by Fourier Transform Infrared Spectroscopy Coupled with Partial Least Squares Regression. Journal of Spectroscopy, 1–9. https://doi.org/10.1155/2016/9492030
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Eudes Villanueva López, Javier S. Córdova-Ramos, Gino Prieto Rosales, Ronald Ortecho Llanos, Adiel Álvarez Ticllasuca , Beetthssy Zzussy Hurtado-Soria, Oscar Jordán-Suárez